I. MATRIX ALGEBRA

DEFINITION

· A rectangular array of numbers, called elements, arranged in systematic manner with m rows and n columns

· Elements can be real or complex numbers

NOTATION

· A double subscript notation aij is used to designate a matrix element
· The subscript i designates the row in which the element lies, and the second subscript j designates the column
· Consider the system of equations,
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 are unknown variables
· 
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are the coefficient of the unknown variables
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 are the known parameters

· The coefficient matrix is an array with a form
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   which is designated by capital letter A
· The variables column vector is written in the form 
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 which is designated by capital letter X
· The parameters column vector is written in the form 
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 which is designated by capital letter Y
· In matrix form the coefficients, variables, and parameters are written AX = Y
· A matrix with m rows and n columns has a dimension m x n
· A matrix with a single row and more than one column is called row vector
· A matrix with a single column and more than one row is called column vector
TYPES OF MATRICES

· Square Matrix – a matrix where number of rows equals the number of columns, m=n. The elements in a square matrix aij for which i = j are called diagonal elements. Those for which i ≠ j are called off-diagonal elements.
· Upper Triangular Matrix – the elements of a square matrix are zero for i > j or 
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· Lower Triangular Matrix – the elements of a square matrix is zero for i < j or 
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· Diagonal Matrix – all off-diagonal elements of square matrix are zero
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· Unit or Identity Matrix – all diagonal elements of square matrix equal to one and all other elements are zero
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· Null Matrix – all elements of matrix are zero
· Transpose of a Matrix – element aij will become aii 

If  
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 the transpose is 
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· Symmetric Matrix – off-diagonal elements of square matrix are equal (aij =  aii)
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· The transpose of Symmetric matrix is identical to the matrix itself
· Skew-symmetric Matrix – The corresponding off-diagonal elements are equal but of opposite sign and the diagonal elements are zero. If A = -At for a square matrix then A is Skew-symmetric Matrix.
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· Orthogonal Matrix – if AtA = U = AAt for a square matrix with real elements, then A is an orthogonal matrix
· Conjugate of Matrix – the imajinary part of matrix elements is multiplied by -1. The conjugate is denoted by A*
· If the elements are real then A  = A*. If all elements are pure imajinary, then A = -A* 
· Hermitian Matrix – all diagonal elements of square matrix are real

· Skew-Hermitian Matrix – all elements are either zero or pure imaginary, A = -(A*)t 
· Unitary Matrix – if (A*)tA = U for a square complex matrix, then A is a unitary matrix. A unitary matrix with real elements is an orthogonal matrix.
DETERMINANTS

· Given the two simultaneous equations,


[image: image19.wmf]1

2

12

1

11

k

x

a

x

a

=

+



[image: image20.wmf]2

2

22

1

21

k

x

a

x

a

=

+


the determinant is 
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 which has the value 
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. This definition is applicable to the general n simultaneous equations.

· Given 
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the minor of a21 is 
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· The Cofactor of an element is (-1)i+j(minor of a21)
· Adjoint Matrix – each element of a square matrix is replaced by its cofactor and then the matrix is transposed. The adjoint is designated as
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MATRIX OPERATIONS

· Addition and Subtraction – matrices of the same dimension are comformable for addition and subtraction. The sum or difference of two m x n matrices, A and B, is a matrix C of the same dimension, i.e. A ± B = C
· Scalar Multiplication – When a matrix is multiplied by a scalar, the elements of the resultant matrix are equal to the product of the original elements and the scalar
· Multiplication of Matrices – defined only if the number of columns of the first matrix A equals the number of rows of Matrix B. If A has dimension m x q and B has dimension q x n then the product matrix C has dimension m x n. And the values of elements in C are computed by 
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   where i = 1...m and j = 1…n
INVERSE OF A MATRIX

· Division does not exist in Matrix algebra except in the case of division of a matrix by scalar

· Division by scalar is performed by dividing each element by the scalar

· The Division operation is replaced by matrix inversion

· For a given set of equations,
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written in matrix form AX = Y
the unknown X can be obtained using X = BY where B is an inverse of A or 
· B = inv (A) = A-1
· 
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where A+ is the adjoint of A, |A| is the determinant of A, and A11…A33 are the Cofactors of a11…a33
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